Abstract
Run-of-river dams produce lower greenhouse gas emissions than large hydropower projects, but there is a paucity of research on their potential ecotoxicological impacts through disruption of natural flow regimes. We used stable isotopes (δ13 C, δ15 N, δ34 S) to reconstruct diet and trace methylmercury in a predatory river-resident passerine, the American dipper (Cinclus mexicanus), at 7 regulated and 6 free-flowing mountain streams in coastal British Columbia, Canada. Assimilated diets were comparable among regulated and unregulated streams, dominated by benthic macroinvertebrates and resident freshwater fish, with negligible contributions from anadromous Pacific salmon. Although invertebrates at unregulated streams were isotopically similar along their gradient, dippers and invertebrates sampled below dams on regulated streams had 34 S-depleted tissues, suggesting increased activity of sulfate-reducing bacteria and more Hg methylation below the dams. Mercury concentrations in dipper blood (417.6 ± 74.1 standard error [SE] ng/g wet wt at regulated streams, 340.7 ± 42.7 SE ng/g wet wt at unregulated streams) and feathers (1564 .6 ± 367.2 SE ng/g dry wt regulated, 1149.0 ± 152.1 SE ng/g dry wt unregulated), however, were not significantly different between stream types. Relative to other passerines across western North America, dippers in these densely forested mountain streams experienced high mercury exposure; and one recently regulated stream supported dippers with mercury concentrations of potential toxicity concern (up to 8459.5 ng/g dry wt in feathers and 1824.6 ng/g wet wt in whole blood). Elevated mercury in dippers is likely attributable to the birds' relatively high trophic position and high regional inorganic mercury deposition; however, biogeochemical conditions in reservoirs of some regulated streams may be contributing to methylmercury production. Environ Toxicol Chem 2018;37:411-426. © 2017 SETAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.