Abstract

A novel FeIII complex [Fe(Hex-tnal)2]BPh4 (1) with a tridentate N2O ligand having an n-hexyl chain, Hex-Htnal (=1-((((1-hexyl-1H-1,2,3-triazol-4-yl)methyl)imino)methyl)naphthalen-2-ol), is reported. Temperature-dependent magnetic susceptibility measurements revealed that 1 exhibits a two-step spin crossover (SCO) transition in the 400-10 K temperature range, including an unusual gradual χMT change above RT (300-345 K) and a hysteretic χMT jump in a narrow temperature range of 345-357 K. These behaviors were also characterized by differential scanning calorimetry. Variable-temperature single-crystal X-ray diffraction studies revealed that the order-disorder transition and conformational change of the hexyl chains and the symmetry change associated with the re-entrant structural phase transition, namely triclinic P1̄ (100-275 K) ↔ monoclinic C2/c (296-340 K) ↔ triclinic P1̄ (360 K), are coupled to variations in intermolecular interactions and the N4O2 coordination environment, resulting in the occurrence of the unusual two-step SCO transition of 1. This study demonstrates that the flexible motion of alkyl substituents in the supramolecular lattice influences the occurrence of anomalous magnetic switching properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call