Abstract

Cadmium zinc telluride (CZT) detectors enable high spatial resolution and high detection efficiency and are utilized for many gamma-ray and X-ray spectroscopy applications. In this article, we describe a stable bonding process and report on the characterization of cross-strip CZT detectors before and after bonding to flexible circuit. The bonding process utilizes gold stud bonding and polymer epoxy technique to bond the flexible circuits to two CZT crystals and form a detector module in an anode-cathode-cathode-anode (ACCA) configuration. The readout electronics is optimized in terms of shaper setting and steering electrode voltage. The average full-width half maximum (FWHM) energy resolution at 662 keV of 110 CZT crystals tested individually was 3.5% ± 0.59% and 4.75% ± 0.48% prebonded and post-bonded, respectively. No depth correction was performed in this study. The average FWHM energy resolution at 662 keV of the scaled-up system with 80 CZT crystals was 4.40% ± 0.53%, indicating the scaled-up readout electronics and stacking of the modules does not deteriorate performance. The proper shielding and grounding of the scaled-up system slightly improved the system-wide performance. The FWHM energy resolution at 511 keV of the scaled-up system was 5.85% ± 0.73%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.