Abstract

Abstract Human activities and climate change have profound effects on marine ecosystems, leading to changes in ecosystem functionality and even reduced resilience. Hence, a systematic assessment of the marine ecosystem resilience and the drivers of resilience is needed. This study provides an approach to help measure the resilience of reduction marine ecosystems by calculating early warning signs of marine net primary productivity, while introducing fishing activities and environmental data in the study area to evaluate the factors affecting marine ecosystem resilience. The results showed that in 36.29% of the Chinese exclusive economic zone, resilience was likely to be significantly decreased. There was a non-linear relationship between fishing activities and indicators of resilience reduction, with pixels with high-intensity fishing activities being more susceptible to resilience reduction. Fishing regulations are urgently needed in areas where marine ecosystem resilience may be reducing. Effective management and protection of marine ecosystems require assessment of the spatial overlap between marine ecosystems states and human activities. This study provides a scientific basis for sustainable management of social-ecological systems by comparing high-precision fishing data to marine environmental data, thereby analysing marine ecosystem resilience through the use of early warning indicators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.