Abstract
Coal–CO2 slurry feed has been suggested as an attractive alternative to coal–water slurry feed for single-stage, entrained-flow gasifiers. Previous work demonstrated the system-level advantages of gasification-based plants equipped with CO2 capture and CO2 slurry feed, under the assumption that carbon conversion remains unchanged. However, gasification in carbon dioxide has been observed to be slower than that in steam. In view of this, the impact of CO2 slurry feeding on gasification kinetics and ultimately on carbon conversion and oxygen consumption in a pressurized, single-stage entrained-flow gasifier processing bituminous coal is studied here using a 1-D reduced order model. Results show that the CO2 gasification reaction plays a dominant role in char conversion when the feeding system is CO2 slurry, increasing the CO content in the products by up to a factor of two. CO inhibition of the gasification reaction and a higher degree of internal mass transport limitations lead to an up to 60% slower gasification rate, when compared to a system based on coal–water slurry. Accordingly, a gasifier with CO2 slurry feed has 15% less oxygen consumption but a 7%-point lower carbon conversion for a given reactor outlet temperature. The gasifier outlet temperature must be raised by 90K in order to achieve the same conversion as in a water slurry-fed reactor; the peak reactor temperature increases by 220K as a result. Net oxygen savings of 8% are estimated for a system with a CO2 slurry-fed gasifier relative to one with water slurry and the same level of conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.