Abstract
The influence of variations in the Si fin shape on the electrical properties of junctionless transistors (JLTs) was investigated through two-dimensional Poisson equation numerical simulations at different doping concentrations. Stronger gate coupling in a triangular fin channel was observed, arising from suppression of the variation in the conduction threshold voltage with increasing doping concentration, compared to JLTs with rectangular fin channels. The potential distribution in the channel cross-section shows a less varied potential at the bottom of a triangular channel than at the bottom of a rectangular channel, and supports the result that triangular channels are less sensitive to variations in channel doping concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.