Abstract

The fabrication of GaAs-based optoelectronic ridge-waveguide devices requires deposition of a topside-contact metallization for proper device operation. Fabrication delays occurring during the processing of TiAu-contact pads have been linked to poor adhesion and metal blister formation, factors that negatively affect the final device yield. In this study, we examined sputter-deposited Ti and Au films to determine the impact of film-thickness process control and film stress as measured by wafer bow. We theorized that competing stress relaxation forces between the Ti and Au films would produce a post-deposition change in wafer bow, which affects the Au film, setting the stage for blister creation. We now report the development of a reduced-stress sputter-deposited TiAu-contact metallization and demonstrate the utility of the modified process with fabrication of blister-free ridge-waveguide devices with high device yield.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.