Abstract

Fibrinogen concentration influences mechanical and functional properties of the clot. The purpose of the present study was to identify threshold concentrations of fibrinogen resulting in relevant changes in whole blood clot elastic modulus and platelet contractile force, as well as plasma prothrombin time and activated partial thromboplastin time. We measured clot elastic modulus, platelet contractile force, and other hemostasis parameters in whole blood samples from 552 patients admitted to a surgical intensive care unit. Platelet contractile force and clot elastic modulus were measured using the Hemodyne apparatus. Fibrinogen levels were between less than 0.10 and 9.44 g/l, with a mean of 2.41 g/l. Mean platelet count was 203 x 10(9) l(-1), with a range of 16 x 10(9) l(-1) to 682 x 10(9) l(-1). High levels of fibrinogen result in improved mechanical stability and improved interaction of platelets with the fibrin network. Clot elastic modulus and platelet contractile force are correlated positively with plasma fibrinogen concentration. However, there was no threshold concentration or ceiling effect concerning the mechanical properties of the clots. In contrast, clotting time assays such as prothrombin time, thrombin time, or activated partial thromboplastin time are influenced by the fibrinogen concentration only at levels below 1 g/l. In linear regression analysis, clot elastic modulus was mainly influenced by fibrinogen concentration (F = 185.4, P < 0.0001), whereas platelet contractile force was influenced by fibrinogen (F = 197.0, P < 0.0001) and platelet count (F = 104.7, P < 0.0001). The present data show that 1 g/l is a threshold fibrinogen concentration for an effect on coagulation assays such as prothrombin time, thrombin time, or activated partial thromboplastin time, but increasing fibrinogen concentrations above this level results in further continuous improvement of mechanical properties of the whole blood clot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.