Abstract

The use of dried olive pomace as complementary energy sources in poultry feed is still limited due to its low protein and high fiber contents. Bioconversion of olive pomace through solid-state fermentation with or without exogenous enzymes is considered as a trial for improving its nutritional value. This study aimed to evaluate the effects of fermented olive pomace with or without enzymatic treatment on the growth, modulations of genes encoding digestive enzymes and glucose transporters, meat oxidative stability, and economic efficiency of broiler chickens. A total of 1400 day-old broiler chicks (Ross 308) were randomly allocated to seven dietary treatments with 10 replicates of 20 birds/replicate. Treatments included control (basal corn–soybean diet) and other six treatments in which basal diet was replaced by three levels (7.5, 15, and 30%) of fermented olive pomace (FOPI) or enzymatically fermented olive pomace (FOPII) for 42 days. The highest body weight gain was observed in groups fed 7.5 and 15% FOPII (increased by 6.6 and 12.5%, respectively, when compared with the control group). Also, feeding on 7.5 and 15% FOPII yielded a better feed conversion ratio and improved the digestibility of crude protein, fat, and crude fiber. The expression of the SGLT-1 gene was upregulated in groups fed FOPI and FOPII when compared with the control group. Moreover, the expression of the GLUT2 gene was elevated in groups fed 7.5 and 15% FOPII. By increasing the levels of FOPI and FOPII in diets, the expression of genes encoding pancreatic AMY2A, PNLIP, and CCK was upregulated (p < 0.05) when compared with the control. Fat percentage and cholesterol content in breast meat were significantly reduced (p < 0.05) by nearly 13.7 and 16.7% in groups fed FOPI and FOPII at the levels of 15 and 30%. Total phenolic and flavonoid contents in breast meat were significantly increased in groups fed 15 and 30% FOPI and FOPII when compared with the control group and even after a long period of frozen storage. After 180 days of frozen storage, the inclusion of high levels of FOP significantly increased (p < 0.05) the levels of glutathione peroxide and total superoxide dismutase and meat ability to scavenge free radical 1,1-diphenyl-2-picrylhydrazyl. Furthermore, the highest net profit and profitability ratio and the lowest cost feed/kg body gain were achieved in groups fed 7.5 and 15% of FOPII, respectively. The results of this study indicated that dietary inclusion of 15% FOPII could enhance the growth performance and economic efficiency of broiler chickens. Moreover, a higher inclusion level of FOPI or FOPII could enhance the quality and increase the oxidative stability of frozen meat and extend the storage time.

Highlights

  • Agro-industrial by-products can provide an alternative feed source for livestock which offer an eco-friendly approach for their disposal and recycling

  • Birds fed FOPII at the level of 15% had higher body weight, weight gain, and better feed conversion ratio (FCR) when compared with the control group during the grower–finisher period (p < 0.05)

  • Food industries yield a large quantity of dried olive pomace (DOP), which has been successfully used in animal nutrition

Read more

Summary

Introduction

Agro-industrial by-products can provide an alternative feed source for livestock which offer an eco-friendly approach for their disposal and recycling. Broiler chickens can utilize dried olive pulp more effectively with increasing age [18] This can be attributed to the presence of high fiber content comprising non-starch polysaccharides [16] that limited its use in broilers’ diet especially at their early age with immature digestive tract [19]. Besides improving the nutritional value of fermented feed, fermentation has been demonstrated to enhance the digestibility of several nutrients such as dry matter, crude protein, and crude fiber [30, 31] It increases the palatability of feed [32, 33], improves growth performance, and enhances beneficial gut microbiota and immune resistance in broiler chickens [34]. Evaluating the expression of genes encoding digestive enzymes (pancreatic amylase, lipase, and cholecystokinin) and sugar transporters (glucose transporter 2, GLUT2; and sodium/glucose cotransporter 1, SGLT1) after feeding on fermented olive pomace may reflect its ability to improve broiler’s growth performance

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.