Abstract

As pivotal immune guardians, B cells were found to be directly associated with the onset and development of many smoking-induced diseases. However, the in vivo molecular response of B cells underlying the female cigarette smoking remains unknown. Using the genome-wide Affymetrix HG-133A GeneChip microarray, we firstly compared the gene expression profiles of peripheral circulating B cells between 39 smoking and 40 non-smoking healthy US white women. A total of 125 differential expressed genes were identified in our study, and 75.2% of them were down-regulated in smokers. We further obtained genotypes of 702 single nucleotide polymorphisms in those promising genes and assessed their associations with smoking status. Using a novel multicriteria evaluation model integrating information from microarray and the association studies, several genes were further revealed to play important roles in the response of smoking, including ICOSLG (CD275, inducible T-cell co-stimulator ligand), TCF3 (E2A immunoglobulin enhancer binding factors E12/E47), VCAM1 (CD106, vascular cell adhesion molecule 1), CCR1 (CD191, chemokine C-C motif receptor 1) and IL13 (interleukin 13). The differential expression of ICOSLG (p = 0.0130) and TCF3 (p = 0.0125) genes between the two groups were confirmed by real-time reverse transcription PCR experiment. Our findings support the functional importance of the identified genes in response to the smoking stimulus. This is the first in vivo genome-wide expression study on B cells at today's context of high prevalence rate of smoking for women. Our results highlight the potential usage of integrated analyses for unveiling the novel pathogenesis mechanism and emphasized the significance of B cells in the etiology of smoking-induced disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.