Abstract
As a challenge to refine the spontaneity and productivity of a machine and human coherence, speech emotion recognition has been an overriding area of research. The trustability and fulfillment of emotion recognition are largely involved with the feature extraction and selection processes. An important role is played in exploring and distinguishing audio content during the feature extraction phase. Also, the features that have been extracted should be resilient to a number of disturbances and reliable enough for an adequate classification system. This article focuses on three main components of a Speech Emotion Recognition (SER) process. The first one is the optimal feature extraction method for a Punjabi SER system. The second one is the use of an appropriate feature selection method that selects effectual features from the ones extracted in the first step and removes the redundant features to improve the conduct of emotion recognition. The third one is the classification model that has been used further for emotion recognition. So the scope of this article is to explain the three main steps of the Punjabi SER system: feature extraction, feature selection, and emotion recognition with classifier. The results have been calculated and compared for number of feature set combinations, with and without a feature selection process. A total of 10 experiments are carried out, and various performance metrics such as precision, recall, F1-score, accuracy, and so on, are used to demonstrate the results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.