Abstract
In contrast to quartz crystal microbalances, the sensitivity of thin film bulk acoustic wave resonators (FBARs) is strongly dependent on all films comprising the multilayered structure. Previous studies proved that placing low acoustic impedance materials at the sensing surface of longitudinal-mode FBARs operating in air can enhance their mass sensitivity by modifying the energy trapped at the sensing surface. Here we investigate if the in-liquid sensitivity to density-viscosity and mass of shear-mode AlN-based solidly mounted resonators displays a similar dependence on the device configuration. By using the finite element simulation method accompanied by experimental verifications we demonstrate that for a given value of the resonant frequency, the sensitivity can be boosted by a proper design of the devices. The results can be of application to in-liquid physical sensors or to gravimetric chemical or biological sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.