Abstract

The objective of the study is to evaluate the mechanism behind alterations in passive and active transport of drugs in the presence of basolaterally applied extracellular protein using the Caco-2 cell model. The permeation across Caco-2 monolayers of two groups of compounds, transported either solely by passive diffusion or partly also by active transport in the secretory direction, was studied at two donor concentrations in the absence or presence of bovine serum albumin (BSA, 0-4%). Each group contained compounds with high or low protein binding (PB) capabilities and high or low absorption in humans (fraction absorbed, f(a)). The unbound fraction (f(u)) of each compound was determined by ultrafiltration. The transport rate of the passively permeating compounds was the same in both apical-to-basolateral (absorptive) and basolateral-to-apical (secretory) directions in the absence of BSA. Basolaterally applied BSA increased the transport rate in the absorptive direction and decreased it in the secretory direction for all compounds, in direct proportion to the extent of PB. The efflux ratios for the actively transported compounds were reduced in the presence of BSA. Basolaterally applied BSA, which mimics in vivo PB, alters both passive and active drug transport in the Caco-2 cell model. Using C(u) in the calculations of transport rate allowed elucidation of the different mechanisms behind these alterations. Our data also suggest that active secretory transport for highly protein-bound compounds might have less effect in vivo than predicted from traditional Caco-2 cell models (without BSA).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.