Abstract

Muscle tissue serves as a key nutrient reservoir that dairy cows utilize to meet energy and amino acid requirements for fetal growth and milk production. Circadian clocks act as homeostatic regulators so that organisms can anticipate regular environmental changes. The objective of this study was to use liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine how chronic circadian disruption in late gestation affected the muscle tissue proteome. At five weeks before expected calving (BEC), multiparous Holstein cows were assigned to either a control (CON, n = 8) or a 6 h forward phase shift (PS, n = 8) of the light–dark cycle every 3 days. At calving, all animals were exposed to CON light–dark cycles. Muscle biopsies were collected from longissimus dorsi muscles at 21 days BEC and at 21 days postpartum (PP). At p < 0.1, 116 and 121 proteins were differentially abundant between PS and CON at 21 days BEC and 21 days PP, respectively. These proteins regulate beta oxidation and glycolysis. Between pregnancy and lactation, 134 and 145 proteins were differentially abundant in CON and PS cows, respectively (p < 0.1). At both timepoints, PS cows exhibited an oxidative stress signature. Thus, dairy cattle management strategies that minimize circadian disruptions may ensure optimal health and production performance.

Highlights

  • Late gestation and early lactation are metabolically demanding physiological states for dairy cattle

  • Among the metabolic adaptations is an increase in catabolic processes that results in mobilization of tissue stores to supply amino acids (AA) and lipids as substrates to fuel the growth and development of the fetus and milk synthesis in the mammary glands

  • Hierarchical and principal component analysis of these sets of proteins indicated that physiological state (3 weeks before expected calving (BEC) versus 3 weeks PP) and treatment (CON versus phase shifted (PS)) affected protein expression profiles (Figure 2)

Read more

Summary

Introduction

Late gestation and early lactation are metabolically demanding physiological states for dairy cattle. The nutrient requirements for early lactation are greater than that for late gestation, because cows require three times more energy to support milk production than the growth of the fetus [1]. One of the metabolic adaptations is reduced insulin sensitivity, which results in decreased tissue deposition and increased fat and protein mobilization. This allows for fatty acid and AA substrates to be transported through the blood to support fetal growth and milk synthesis [3]. There is a reduced abundance of proteins related to glycogenesis and TCA cycle, thereby, indicating the promotion of tissue reserve mobilization and reduction in tissue storage to meet the early lactation nutrient requirements of the dairy cow

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call