Abstract
AbstractThis study concerned the fragility of maritime Antarctic soils under increasing temperature, using the C dynamics and structural characteristics of humic substances as indicators. Working with four representative soils from King George Island (Lithic Thiomorphic Cryosol (LTC1 and LTC2), Ornithogenic Cryosol (OG) and Gelic Organosol (ORG)) we evaluated the total organic C and nitrogen contents, the oxidizable C and humic substances. Soil samples were incubated to assess the amount of C potentially mineralizable at temperatures typical of an Antarctic summer (5–14°C). Humic acids showed a higher aliphatic character and a smaller number of condensed aromatic groups, which suggests that these molecules from Antarctic soils are generally less resistant to microbial degradation than humic acids molecules from other regions. Based on 13C NMR spectra of MAS and CP/MAS, samples of soil humic acids of mineral soils (LTC1 and LTC2) have a higher content of aliphatic C, and heteroatom C, with lower levels of carbonyl and aromatic C, when compared with organic matter-rich soils (OG and ORG). Increasing incubation temperature led to a higher rate of mineralizable C in all soils. A sequence of soil fragility was suggested - LTC1 and LTC2 > OG > ORG - which showed a correlation with the Q10 coefficient and the ratio of labile and recalcitrant C fractions of soil organic matter (R2 = 0.83).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.