Abstract
Hydroponic experiments were conducted to investigate the role of exogenous silicon (Si) addition in increasing hexavalent chromium (Cr VI) tolerance in rice seedlings. Rice seedlings were grown under 100 μM Cr(VI) stress without or with 10 μM Si. Chromium treatment decreased growth, photosynthetic pigments and protein, which was accompanied by a significant increase in Cr accumulation and lipid peroxidation (as malondialdehyde; MDA). However, Si addition alleviated Cr toxicity and promoted growth of rice by decreasing Cr accumulation, root-to-shoot Cr transport and MDA level. Contents of macro (Mg, Ca and K) as well as micronutrients (Zn and Fe) were decreased by Cr except Mn while Si addition prevented decrease in these nutrients induced by Cr. Antioxidant capacity and total phenolic contents were decreased by Cr while these indices improved by Si addition. Treatment of Cr decreased the length of leaf epidermal cells and stomatal frequency, and adversely affected chloroplasts containing mesophyll cells and integrity of xylem and phloem, and Si addition minimized these abnormalities. However, frequency of root hairs was increased by Cr treatment. Results showed that exogenous Si addition enhanced Cr(VI) tolerance in rice seedlings by decreasing Cr accumulation, root-to-shoot Cr transport and MDA level, and by increasing content of some mineral elements (K, Fe and Zn) and antioxidant capacity compared to the Cr treatment alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.