Abstract

Indoor dust is the main carrier of indoor pollutants, especially dust mite allergens and bacteria, they can trigger asthma, rhinitis, eczema and other allergic diseases. However, the interactions between dust mite allergens and bacterial communities in different types of indoor dust are not clear. The study focused on particulate and flocculent fibrous dust, explored the concentrations of Der p 1 (Dermatophagoides pteronyssinus) and Der f 1 (D. farinae) in 46 households in Changchun and their environmental influences, characterized the bacterial communities by high-throughput sequencing, and the interactions between Der p 1, Der f 1 and bacterial communities were explored. The results showed that Der p 1 and Der f 1 tended to accumulate more in flocculent fibrous dust, and Der p 1 predominated in the indoor dust samples. The floor height, years of housing occupancy and the living areas all affected the concentrations of dust mite allergens. In bacterial community, Proteobacteria, Firmicutes and Actinobacteria were leading phyla in the two types of dust. Kocuria, Blastococcus and Massilia were dominating genera in particulate dust and Acinetobacter, Lactobacillus, Corynebacterium_1 were dominating genera in flocculent fibrous dust. The overall diversity and species richness of bacteria in particulate dust were significantly higher than those in flocculent dust (p < 0.001). The living area was an important environmental factor affecting the bacterial community in flocculent fibrous dust (p < 0.01). The interaction between the relative abundance of Proteobacteria, Firmicutes and Actinobacteria and dust mite allergen concentrations significantly differed between the two dust types, indicating that bacteria could be used both as food and to establish symbiotic relationships with household dust mites (HDMs) hosts and provide nutrition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call