Abstract

Abstract The effect of the El Niño/Southern Oscillation (ENSO) teleconnection and climate change trends on observed North American wintertime daily 2-m temperature is investigated for 1960–2022 with a quantile regression model, which represents the variability of the full distribution of daily temperature, including extremes and changes in spread. Climate change trends are included as a predictor in the regression model to avoid the potentially confounding effect on ENSO teleconnections. Based on prior evidence of asymmetric impacts from El Niño and La Niña, the ENSO response is taken to be piecewise linear, and the regression model contains separate predictors for warm and cool ENSO. The relationship between these predictors and shifts in median, interquartile range, skewness, and kurtosis of daily 2-m temperature are summarized through Legendre polynomials. Warm ENSO conditions result in significant warming shifts in the median and contraction of the interquartile range in central-northern North America, while no opposite effect is found for cool ENSO conditions in this region. In the southern U.S., cool ENSO conditions produce a warming shift in the median, while warm ENSO has little impact on the median, but contracts the interquartile range. Climate change trends are present as a near-uniform warming in the median and across quantiles and have no discernable impact on interquartile range or higher-order moments. Trends and ENSO together explain a substantial fraction of the interannual variability of daily temperature distribution shifts across much of North America and, to a lesser extent, changes of the interquartile range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call