Abstract

This paper characterizes the sublethal impact of engineered ZnO nanoparticles on the individual performance of the marine mussel Mytilus galloprovincialis within the context of Dynamic Energy Budget theory, thereby allowing an integrated evaluation of the impact of multiple stressors on various endpoints. Data include measurements of the impact of ZnO nanoparticles on body burden, feeding, respiration, shell length, biomass, and mortality of mussels kept in laboratory tanks for over 100days. ZnO nanoparticles in the environment impair the mussels' feeding rate (EC50 for the maximum feeding rate is 1.5mgZnOnanoparticlesL−1). Zn accumulated in tissue increases respiration (EC50 for the respiration rate is 0.9mgenvironmentalZnOnanoparticlesL−1 with the body burden having reached its ultimate level), indicating that maintenance processes are more affected by ZnO nanoparticles than feeding. The feeding regime constrained growth and biomass production to the extent that the impact of ZnO nanoparticles on these processes was undetectable, yet the remaining measurements allowed the estimation of the toxicity parameters. The toxicity representation, combined with the DEB model, allowed the calculation of the effect of the nanoparticles on the expected lifetime production of reproductive matter. EC50 for the expected lifetime production of reproductive matter is less than 0.25mgZnOnanoparticlesL−1, indicating that that the ecological impact of ZnO nanoparticle exposure is stronger than its impact on individual physiological rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.