Abstract

This work investigates the impacts of energy–momentum conservation violation on the configuration of strange stars constraint with gravitational wave (GW) event GW190814 as well as eight recent observations of compact objects. The GW echoes from these interesting classes of compact objects are also calculated. To describe the matter of strange stars, we have used two different equations of state (EoSs): first an ad-hoc exotic EoS, the stiffer MIT Bag model and next realistic CFL phase of quark matter EoS. We choose Rastall gravity as a simple model with energy–momentum conservation violation with a set of model parameter values. Our results show that this gravity theory permits stable solutions of strange stars and the resulting structures can foster GW echoes. We illustrate the implication of the gravity theory and found that the negative values of the Rastall parameter result in more compact stellar configurations and lower GW echo frequency. With an increase in the Rastall parameter, both the compactness of the stellar configurations and echo time decrease. It is worth mentioning here that with the chosen set of some probable strange star candidates from observational data and also in light of GW 190814, we have evaluated the radii of stellar models. Also, the GW echo frequencies associated with strange stars are found to be in the range of ≈ 9–27 kHz for both cases. From this work, it is also inferred that the assumption regarding the equivalence of Rastall’s theory to Einstein’s theory is refuted as we have noticed many deviations in the physical properties of the considered compact stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.