Abstract
In the present work, attempts have been made to investigate the modification in particle track etching response of polyallyl diglycol carbonate (PADC) due to impact of 2 MeV electrons. PADC samples pre-irradiated to 1, 10, 20, 40, 60, 80 and 100 Mrad doses of 2 MeV electrons were further exposed to 140 MeV28 Si beam and dose-dependent track registration properties of PADC have been studied. Etch-rate values of the PADC irradiated to 100 Mrad dose electron was found to increase by nearly 4 times that of pristine PADC. The electron irradiation has promoted chain scissioning in PADC, thereby converting the polymer into an easily etchable polymer. Moreover, the etching response and the detection efficiency were found to improve by electron irradiation. Scanning electron microscopy of etched samples further revealed the surface damage in these irradiated PADCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.