Abstract
The effect of electron injection on minority carrier transport in Si-doped β-Ga2O3 Schottky rectifiers with 18 MeV alpha particle exposure (fluences of 1012–1013 cm−2) was studied from room temperature to 120°C. Electron Beam-Induced Current technique in-situ in Scanning Electron Microscope was used to find the diffusion length of holes as a function of duration of electron injection and temperature for alpha-particle irradiated rectifiers and compared with non-irradiated reference devices. The activation energy for electron injection-induced effect on diffusion length for the alpha-particle irradiated sample was determined to be ∼ 49 meV as compared to ∼74 meV for the reference sample. The decrease in activation energy of the electron injection effect on diffusion length for irradiated sample is attributed to radiation-induced generation of additional shallow recombination centers closer to the conduction band edge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.