Abstract

Methane, a powerful greenhouse gas, is both produced and consumed in anoxic coastal sediments via microbial processes. Although the anaerobic oxidation of methane (AOM) is almost certainly an important process in coastal freshwater and salt marsh sediments, the factors that control the rates and pathways of AOM in these habitats are poorly understood. Here, we present the first direct measurements of AOM activity in freshwater (0PSU) and brackish (25PSU) wetland sediments. Despite disparate sulfate concentrations, both environments supported substantial rates of AOM. Higher sulfate reduction (SR) rates were measured in the freshwater site and SR at both sites was of sufficient magnitude to support the observed AOM activity. Laboratory incubations of freshwater and brackish tidal, wetland sediments amended with either nothing [control], sulfate, nitrate, manganese oxide (birnessite) or iron oxide (ferrihydrite) and supplied with a methane headspace were used to evaluate the impact(s) of electron acceptor availability on potential AOM rates. Maximum AOM rates in brackish slurries occurred in the sulfate amendments. In contrast, addition of sulfate and several possible electron acceptors to the freshwater slurries decreased AOM rates relative to the control. High ratios of AOM activity relative to SR activity in the nitrate, birnessite, and ferrihydrite treatments of both the brackish and freshwater slurries provided evidence of AOM decoupled from SR. This study demonstrates that both freshwater and brackish coastal wetland sediments support considerable rates of anaerobic methanotrophy and provides evidence for sulfate-independent AOM that may be coupled to nitrate, iron, or manganese reduction in both environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.