Abstract
In this chapter, the impact of electrode roughness and bilayer insulator tunnel barriers on the performance of metal-insulator-metal (MIM) diodes are discussed. The effect of bottom electrode roughness on the current versus voltage (I–V) characteristics of asymmetric electrode M1IM2 tunnel diodes is discussed first. Atomic layer deposition (ALD) is used to deposit high quality insulators independent of bottom metal electrode. It is shown that bottom electrode roughness can strongly influence the I–V characteristics of M1IM2 diodes, overwhelming even the metal work function difference induced asymmetry. Devices with smoother bottom electrodes are shown to produce I–V behavior with better agreement with Fowler–Nordheim tunneling theory as well as yield a higher percentage of well-functioning devices. By combining high quality uniform tunnel barriers deposited by ALD with atomically smooth (~0.3 nm RMS roughness) bottom electrodes, highly nonlinear and asymmetric MIM tunnel diodes with good reproducibility and stable I–V behavior are produced. Next, the impact of nanolaminate bilayer insulator tunnel barriers on asymmetric metal work function metal-insulator-insulator-metal (M1I1I2M2 & M1I2I1M2) devices is discussed. It is demonstrated that bilayer tunnel barriers can be arranged to either enhance, oppose, or even reverse the asymmetry induced by the asymmetric work function electrodes. These results represent experimental demonstration that step tunneling (a step change in the tunneling distance through a bilayer tunnel barrier) can dominate the I–V asymmetry of M1IIM2 diodes with asymmetric work function electrodes. By combining bilayer tunnel barriers with asymmetric metal electrodes, devices are made with voltage asymmetry and nonlinearity that exceed that of standard single layer asymmetric electrode M1IM2 devices as well as that of symmetric electrode M1I1I2M1 devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.