Abstract

The East Asian summer monsoon (EASM) can change the spatio-temporal distribution of aerosols by influencing the aerosol horizontal and vertical transports and the wet deposition of aerosols over East Asia. In this paper, we examined the aerosol optical depth (AOD) during summer together with the intensity of the EASM based on moderate-resolution imaging spectroradiometer products on board the Terra satellite and the modeling results from the NCAR Community Atmospheric Model 5.1 in the mid-latitude monsoonal East Asia (20–45° N, 105–130° E). Our results from both observations and simulations show positive correlations of AOD with the monsoon intensity over the Northeast Asia sub-region (32.5–45° N, 105–130° E), and negative correlations with that over the southeast Asia sub-region (20–32.5° N, 105–130° E). The observed and simulated AODs were much larger over the northern sub-region and much smaller over the southern sub-region in the strongest monsoon years compared with those in the weakest monsoon years. The model results suggest that the mechanism responsible for the north-south difference in the aerosol distribution was mainly caused by lower-tropospheric meridional wind anomalies related to EASM. Compared with the weakest monsoon years, the strongest monsoon years experienced southerly wind anomalies, which enabled more aerosols to be transported northward and resulted in a convergence of aerosols over the northern sub-region. In addition, the wet deposition of aerosols reduced (enhanced) the aerosol concentrations in the northern (southern) sub-region during the strongest monsoon years compared with the weakest monsoon years, which partly offset the impact of the lower southerly winds on the aerosol distribution over East Asia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call