Abstract
Ultra low permeability rocks such as shales exhibit complex fracture networks which must be discretely characterized in our reservoir models to evaluate stimulation designs and completion strategies properly. The pressure (Darcy’s law) and composition driven (Fick’s law) flow mechanisms when combined result in composition, pressure and saturationdependent slippage factor. The approach used in this study is to utilize pressure-dependent transmissibility multipliers to incorporate apparent gas-permeability changes resulting from multi-mechanism flows in commercial simulators. This work further expounds on the effectiveness of the theory by presenting a descriptive analysis between two commercially utilized numerical simulators. The applicability of dynamic slippage as an effective flow mechanism governing gas flow mechanisms within the computational environment of two different simulators is attempted in this analysis. Results indicate that slippage-governed flow in modelling shale reservoirs should not be ignored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.