Abstract
Due to the rapid increase in power conversion efficiency (PCE) of organic–inorganic perovskite solar cells (PSCs) and exceeding the PCE achieved in conventional single-junction silicon solar cells this technology has become the focus of research. The quality of perovskite film plays a vital role in developing the high performance PSCs and depends upon many factors, such as, composition of the perovskite, growth method, drying temperature, etc. In this work, hole transport material free (HTM-free) glass/FTO/c-TiO2/m-TiO2/m-ZrO2/Carbon electrode based PSCs are fabricated. Effect of prevoskite drying temperature on the photovoltaic performance and impedance spectra of these devices is studied by varying temperature from 50 to 70 °C. The photovoltaic and impedance spectra of the devices are observed to be highly dependent on the drying temperature. The best power conversion efficiency is obtained for drying temperature of 60 °C. These results show that determining the optimum drying temperature is crucial to ensure formation of perovskite crystals, highest surface coverage of perovskite, highest light harvesting and successful charge extraction from the fabricated devices in order to achieve highest performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.