Abstract

Abstract. Long-range transport of continental emissions has a far-reaching influence over remote regions, resulting in substantial change in the size, morphology, and composition of the local aerosol population and cloud condensation nuclei (CCN) budget. Here, we investigate the physicochemical properties of atmospheric particles collected on board a research aircraft flown over the Azores during the winter 2018 Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA) campaign. Particles were collected within the marine boundary layer (MBL) and free troposphere (FT) after long-range atmospheric transport episodes facilitated by dry intrusion (DI) events. Chemical and physical properties of individual particles were investigated using complementary capabilities of computer-controlled scanning electron microscopy and X-ray spectromicroscopy to probe particle external and internal mixing state characteristics. Furthermore, real-time measurements of aerosol size distribution, cloud condensation nuclei (CCN) concentration, and back-trajectory calculations were utilized to help bring into context the findings from offline spectromicroscopy analysis. While carbonaceous particles were found to be the dominant particle type in the region, changes in the percent contribution of organics across the particle population (i.e., external mixing) shifted from 68 % to 43 % in the MBL and from 92 % to 46 % in FT samples during DI events. This change in carbonaceous contribution is counterbalanced by the increase in inorganics from 32 % to 57 % in the MBL and 8 % to 55 % in FT. The quantification of the organic volume fraction (OVF) of individual particles derived from X-ray spectromicroscopy, which relates to the multi-component internal composition of individual particles, showed a factor of 2.06 ± 0.16 and 1.11 ± 0.04 increase in the MBL and FT, respectively, among DI samples. We show that supplying particle OVF into the κ-Köhler equation can be used as a good approximation of field-measured in situ CCN concentrations. We also report changes in the κ values in the MBL from κMBL, non-DI=0.48 to κMBL, DI=0.41, while changes in the FT result in κFT, non-DI=0.36 to κFT, DI=0.33, which is consistent with enhancements in OVF followed by the DI episodes. Our observations suggest that entrainment of particles from long-range continental sources alters the mixing state population and CCN properties of aerosol in the region. The work presented here provides field observation data that can inform atmospheric models that simulate sources and particle composition in the eastern North Atlantic.

Highlights

  • Marine low clouds play a significant role in the world’s climate and energy balance (Wood et al, 2015)

  • We presented detailed chemical imaging of individual atmospheric particles collected over the Azores during long-range transport events

  • Traced from more than 4000 km away from North America within a span of 48–72 h. During these long-range transport episodes, aerosols undergo substantial changes in size, morphology, and chemical composition among others as they are carried across the Atlantic Ocean and descend from the free troposphere (FT) into the marine boundary layer (MBL) altitudes over the ENA region

Read more

Summary

Introduction

Marine low clouds play a significant role in the world’s climate and energy balance (Wood et al, 2015). They are the major factor in increasing the Earth’s albedo, which is the fraction of solar energy reflected back into space, leading to an overall cooling effect (Wood, 2012; Wood et al, 2015). The response of low-altitude clouds is sensitive to aerosol perturbations, which requires a greater understanding of the processes that govern regional aerosol budget and source attribution (Levin and Cotton, 2009; Altaratz et al, 2014; Rosenfeld et al, 2019; Zheng et al, 2018, 2021).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call