Abstract
The dependence of the aerodynamic stability of fan blades with amplitude and nodal diameter of potential perturbations associated with the presence of pylons is studied. The analysis is conducted using a novel block-wise spatial Fourier decomposition of the reduced-passages to reconstruct the full-annulus solution. The method represents very efficiently unsteady flows generated by outlet static pressure non-uniformities. The explicit spatial Fourier approximation is exploited to characterize the relevance of each nodal diameter of outlet perturbations in the fan stall process, and its nonlinear stability is studied in a harmonic by harmonic basis filtering the nonlinear contribution of the rest. The methodology has been assessed for the NASA rotor 67. The maximum amplitude of the downstream perturbation at which the compressor becomes unstable and triggers a stall process has been mapped. It is concluded that the fan stability dependence with the amplitude of the perturbation is weaker than in the case of intake distortion. For perturbations with an odd number of nodal diameters, the nonlinear stability analysis leads to the same conclusions as to the small amplitude linear stability analysis. However, if the perturbations have an even number nodal diameters, the flow exhibits a supercritical bifurcation and have a stabilizing effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Global Power and Propulsion Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.