Abstract

Parameters limiting the improvement of high-frequency noise characteristics for deep-submicrometer MOSFETs with the downscaling process of the channel gate length are analyzed experimentally and analytically. It is demonstrated that the intrinsic Pucel's noise P, R, and C parameters are not strongly modified by the device scaling. The limitation of the noise performance versus the downscaling process is mainly related to the frequency performance (f/sub max/) of the device. It is demonstrated that for MOSFETs with optimized source, drain, and gate accesses, the degradation of the maximum oscillation frequency is mainly related to the increase of the parasitic feedback gate-to-drain capacitance and output conductance with the physical channel length reduction. Optimization of these internal parameters is needed to further improve the high-frequency noise performance of ultra deep-submicrometer MOSFETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.