Abstract

Autogenous shrinkage of wellbore cement widely impairs zonal isolation. MgO-based cement expansion additives (CEAs) can mitigate this shrinkage, or even impart net expansion, by creating porosity through displacive crystal growth-processes. However, both MgO hydration and autogenous shrinkage behaviour depend strongly on stress state. Evaluation of CEA performance in wellbore cements therefore requires testing under elevated pressures representative for subsurface environments. We report experiments addressing the chemical and bulk volume changes that occur in cement hydrating at 10 MPa confining pressure and 90 °C. Volumetric response was investigated as function of MgO concentration, external water supply, and pore pressure decrease through water consumption during reaction. Results show the bulk expansion achieved using MgO-based CEAs diminishes markedly with increasing effective confining pressure or, equivalently, upon restricting fluid supply. This reduced expansion-potential under pressure has profound implications for slurry design, notably regarding CEA-concentrations required to counteract micro-annulus formation while maintaining low cement permeability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.