Abstract
The effect of doping concentration on the performance of short-wavelength quantum-cascade lasers based on the strain-compensated InGaAs/InAlAs/AlAs heterostructure on InP, emitting at 3.8 μm, is investigated for average doping concentrations between 0.3 and 3.9×1017 cm−3 (sheet densities between 1.6 and 20.9×1011 cm−2). Although the threshold current density is rather independent of doping concentration, the maximum current density increases with doping and exhibits a saturation for the highest doping level. Other important performance characteristics such as differential quantum efficiency, peak optical emission power, slope efficiency, and maximum operating temperature are observed to be maximized for structures with an average doping of 2−3×1017 cm−3, corresponding to a sheet density of about 1.5×1012 cm−2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.