Abstract

AbstractWhen processing Si nanowire based Tunnel Field Effect Transistors (TFETS's), a significant reduction of B diffusion with decreasing nanowire diameter is observed and attributed to reduced transient enhanced diffusion close to the nanowire surface caused by the recombination and out‐diffusion of excess self‐interstitials. In this study, Ultra High Voltage Electron Microscopy (UHVEM) is used to study in situ the formation of self‐interstitial clusters in nanowire based TFET containing samples prepared by Focused Ion Beam (FIB) thinning.Si nanowires with diameters ranging from 40 to 500 nm are irradiated in an UHVEM using different fluxes of 2 MeV electrons at temperatures between room temperature and 375 °C. A strong dependence of defect formation on nanowire radius and on dopant concentration and type is observed. The UHVEM observations are compared with simulations based on quasi‐chemical reaction rate theory and with two dimensional dopant concentration distributions determined with high‐vacuum Scanning Spreading Resistance Microscopy (SSRM). (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.