Abstract

Mesenchymal stem cells (MSCs) from the umbilical cord (UC) have aroused considerable interest. However, little is known about the maternal effect on these cells. The aim of this study was to verify the impact of the nutritional status of donor goats on the growth and differentiation of MSCs from the UC. At parturition, 19 goats were grouped based on their low or high body mass index (low BMI, LBMI, n = 9; and high BMI, HBMI, n = 10). UCs were collected during delivery and Wharton's jelly (WJ) fragments cultured. WJ-MSCs were differentiated into osteocytes, adipocytes, chondrocytes, and the population doubling time (PDT) was determined. Samples of WJ-MSCs were also used to verify the expression of the CD90, CD73, CD34, CD45, and CD105 genes. Media used for WJ-MSC primary cultures were analyzed using near-infrared spectroscopy. The lag phase was 7.5 ± 0.6days and the entire culture took 26.7 ± 1.3days, with a cell proliferation rate of 8.500 cells/day. The mean PDT from subculture was 30.0 ± 0.7h. The CD105 gene was sub-expressed in LBMI, and the spectra of the spent media from the second to fourth day of WJ-MSC primary culture were segregated into negative scores by multivariate analysis. We conclude that, in goats, the nutritional balance of the donor did not affect the in vitro growth of MSCs derived from the UC. However, the molecular profile observed in the low BMI group suggests that the use of MSCs for therapeutic purposes should be considered more carefully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.