Abstract

The presence of Dissolved Organic Matter (DOM) can exert a strong influence on the effectiveness of the UV/chlorine process. This study examined the impact of five DOM isolates with different characteristics on the degradation kinetics of model contaminant primidone (PM) during UV/chlorine treatment. The formation of Disinfection By-Products (DBPs) from DOM after 15-min UV/chlorine treatment followed by 24 h chlorination was investigated and compared with chlorination alone. The use of chemical probes and radical scavengers revealed that •OH and ClO• were the main radical species responsible for the loss of PM at acidic and alkaline conditions, respectively. All tested DOM isolates significantly inhibited the decay of PM. A strong negative correlation (>0.93) was observed between the decay rate constants of PM and SUVA of DOM isolates, except for EfOM isolate, which induced the strongest inhibitory effect due to its higher abundance in sulfur-containing functional groups (i.e., sink of •OH/Cl• radicals). Compared with chlorination, the formation of Adsorbable Organic Chlorine (AOCl) and Trichloromethane (TCM) during the UV/Chlorine process was enhanced and hindered for low SUVA isolates and high SUVA DOM, respectively. However, Dichloroacetonitrile (DCAN) formation was generally lower for all isolates except for Ribou Reservoir DOM at pH 8.4 because of its high reactive nitrogenous DBP precursors at caustic conditions. However, when normalized to the chlorine consumed, the UV/Chlorine process always led to a lower DBPs formation compared with chlorination alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call