Abstract

Trions are charged excitons that form upon optical or electrical excitation of low-dimensional semiconductors in the presence of charge carriers (holes or electrons). Trion emission from semiconducting single-walled carbon nanotubes (SWCNTs) occurs in the near-infrared and at lower energies compared to the respective exciton. It can be used as an indicator for the presence of excess charge carriers in SWCNT samples and devices. Both excitons and trions are highly sensitive to the surrounding dielectric medium of the nanotubes, having an impact on their application in optoelectronic devices. Here, the influence of different dielectric materials on exciton and trion emission from electrostatically doped networks of polymer-sorted (6,5) SWCNTs in top-gate field-effect transistors is investigated. The observed differences of trion and exciton emission energies and intensities for hole and electron accumulation cannot be explained with the polarizability or screening characteristics of the different dielectric materials, but they show a clear dependence on the charge trapping properties of the dielectrics. Charge localization (trapping of holes or electrons by the dielectric) reduces exciton quenching, emission blue-shift and trion formation. Based on the observed carrier type and dielectric material dependent variations, the ratio of trion to exciton emission and the exciton blue-shift are not suitable as quantitative metrics for doping levels of carbon nanotubes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.