Abstract

Using rheo-optical techniques, we investigated the impact of interfacial wetting of symmetric diblock copolymers (BCPs) on the coalescence and aggregation of polydimethylsiloxane (PDMS) droplets in immiscible polyethylene-propylene (PEP) homopolymers. Anionic polymerization was used to synthesize well-defined matrix homopolymers and symmetric 16 kg/mol-to-16 kg/mol PDMS-b-PEP diblock copolymers with low polydispersity (PDI ≈ 1.02) as characterized with size exclusion chromatography and nuclear magnetic resonance spectroscopy. Blends were formulated to match the viscosities between the droplets and the matrix. Moreover, molecular weights of these components were varied to ensure that the inner block of the copolymer inside the droplet was collapsed and dry, whereas the outer block of the copolymer outside of the droplet was stretched and wet. Droplet breakup and coalescence as well as interfacial tensions were measured using rheo-optical experiments with Linkam shearing stage and an optical microscope. Subsequent to droplet breakup at high shear rates, we found that the BCPs mitigated shear-induced coalescence at lower shear rates. Based on surface tension measurements, the stretching of the BCP increased in lower molecular weight matrices, causing the droplet surface to saturate at lower coverage in line with theoretical predictions. Droplet aggregation was detected with further reductions in shear rate, which was attributed to the dewetting or the expulsion of the matrix from a saturated brush. Ultimately, the regions of droplet coalescence and aggregation were scaled by balancing the forces of shear with those due to the attraction between BCP-coated droplets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.