Abstract

BackgroundThe control of foot trajectory during swing phase is important to achieve safe clearance with the ground. Complexity of a physiological control system arises from the interaction of structural units and regulatory feedback loops that operate to enable the organism to adapt to a non-static environment. Diabetic polyneuropathy (DPN) impairs peripheral feedback inputs and alters ankle control during gait, which might affect toe clearance (ToC) parameters and its complexity, predisposing DPN-subjects to tripping and falling. Research questionHow do different DPN-severity degrees change ToC trajectory and minimum ToC, and its complexity during gait of diabetic subjects? Methods15 healthy controls and 69 diabetic subjects were assessed and classified into DPN-severity degrees by an expert fuzzy model: absent (n = 26), mild (n = 21) and severe (n = 22). Three-dimensional kinematics was measured during comfortable walking. ToC was the minimum vertical distance between the marker placed at the first metatarsal head and the ground during swing. Mean ToC, ToC standard deviation (SD) between trials, and sample entropy (SaEn) and standard deviation (SD) of ToC trajectory were calculated from the ToC temporal series. ANOVA and ANCOVA (with the walking speed as the covariate) and Bonferroni pairwise post-hoc tests (P < 0.05) were used to compare groups. ResultsMean ToC and ToC SD did not show differences between groups (ANCOVA F = 0.436; df = 3; P = 0.705; F=1.719; df=3; P=0.170, respectively). ToC trajectory SD also did not show differences between groups (ANCOVA F = 3.98; df = 3; P = 0.755). Severe-DPN subjects showed higher ToC_Traj_SaEn than controls (ANCOVA F=2.60; df=3; P = 0.05). SignificanceSevere-DPN subjects showed a more complex pattern of overall foot-ankle trajectory in swing phase in comparison to controls, although did not present lower minimum ToC values. The higher complexity of ToC might lead to an increase in the motor system output (more strategies, increase in variability), resulting in a more unstable system and selected motor strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.