Abstract

This Letter describes an innovative interactive evolutionary computational tool to optimise robust analogue complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs), by using genetic algorithm, entitled iMTGSPICE. The main results demonstrate that the iMTGSPICE is able to reduce the optimisation cycle times of designs of robust single-ended single-stage and Miller operational transconductance amplifiers (OTAs) in up to 93.9% in comparison to the non-interactive optimisation process. Moreover, the iMTGSPICE is capable of reducing the influence of the knowledge levels of the analogue CMOS ICs designers (experts and non-experts) to obtain robust potential solutions (maximum error of 0.5% for the Miller OTA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.