Abstract

Compound open channel flows appear in most natural rivers are of great importance in river management and flood control. In this study, large eddy simulations were carried out to simulate the compound open channel flows with four different depth ratios (hr = 0.10, 0.25, 0.50, and 0.75). The main flow velocity, secondary flow, Reynolds stress, and bed shear stress were obtained from numerical simulations. The depth-averaged streamwise momentum equation was used to quantify the lateral momentum exchange between the main channel and floodplain. The instantaneous coherent structures were presented by the Q criterion method. The impact of hr on flow structure and turbulence characteristics was analyzed. The results showed that with the increase of hr, the high velocity area in the main channel shifted to the floodplain, and the dip phenomenon became more obvious; the Reynolds stress largely contributed to the lateral momentum exchange within the flows near the side walls of floodplain; and the vortex structures were found to significantly increase in the floodplain region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call