Abstract
AbstractThe thermal and hydraulic performance of heat exchangers can be seriously impaired by the formation of fouling deposits on the heat transfer surfaces. The thermal effect of fouling can be complicated when the deposit is subject to ageing, represented here as a change in deposit thermal conductivity (but not thickness) over time. In this article, we revisit the ageing concept for crude oil fouling proposed by Nelson (Refiner Nat Gas Manufacturer. 1934;13:271–276, 292–298), using a numerical model incorporating first order kinetics to generate quantitative comparisons of different ageing rates. Results are reported for lumped parameter systems (which also simulate point measurement methods commonly used in laboratory testing) that demonstrate that ageing can have a substantial influence on the rate of heat transfer and hence on the surface temperature and rate of fouling. Rapid ageing (compared with the rate of deposition) does not pose problems, but slow ageing, or the use of constant heat fluxes in experiments, can lead to modified thermal fouling behavior. It is concluded that deposit ageing dynamics should be considered alongside deposition rate dynamics when interpreting experimental fouling data and when modeling fouling behavior in support of heat exchanger design or operation. © 2009 American Institute of Chemical Engineers AIChE J, 2010
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.