Abstract

In this study, nanoemulsion-based delivery systems fabricated using three different methods were compared with three commercially available curcumin supplements. Powdered curcumin was dispersed into the oil-in-water nanoemulsions using three methods: the conventional oil-loading method, the heat-driven method, and the pH-driven method. The conventional method involved dissolving powdered curcumin in the oil phase (60 °C, 2 h) and then forming a nanoemulsion. The heat-driven method involved forming a nanoemulsion and then adding powdered curcumin and incubating at an elevated temperature (100 °C, 15 min). The pH-driven method involved dissolving curcumin in an alkaline solution (pH 12.5) and then adding this solution to an acidified nanoemulsion (pH 6.0). The three commercial curcumin products were capsules or tablets purchased from an online supplier: Nature Made, Full Spectrum, and CurcuWin. Initially, the encapsulation efficiency of the curcumin in the three nanoemulsions was determined and decreased in the following order: pH-driven (93%) > heat-driven (76%) > conventional (56%) method. The different curcumin formulations were then subjected to a simulated gastrointestinal tract (GIT) model consisting of mouth, stomach, and small intestine phases. All three nanoemulsions had fairly similar curcumin bioaccessibility values (74-79%) but the absolute amount of curcumin in the mixed micelle phase was highest for the pH-driven method. A comparison of these nanoemulsions and commercial products indicated that the curcumin concentration in the mixed micelles decreased in the following order: CurcuWin ≈ pH-driven method > heat-driven method > conventional method ≫ Full spectrum > Nature Made. This study provides valuable information about the impact of the delivery system type on curcumin bioavailability. It suggests that encapsulating curcumin within small lipid particles may be advantageous for improving its absorption form the GIT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.