Abstract

AbstractNine field experiments were conducted from 2017 to 2019 in Ontario to determine the impact of early weed interference on corn yield based on corn growth stage, days after emergence (DAE), accumulated crop heat units (CHU), and weed size. The predicted weed size at herbicide application that resulted in a 1%, 2.5%, 5%, 10%, 25%, and 50% yield loss in corn was estimated to be 1, 4, 11, 53, non-estimable (N est.*), and N est.* cm under low weed density and 3, 5, 7, 11, 27, and N est.* cm under high weed density, respectively. The predicted DAE at herbicide application time that resulted in a 1%, 2.5%, 5%, 10%, 25%, and 50% yield loss in corn was predicted to be 14, 20, 27, 44, N est.*, and N est.* DAE under low weed density and 5, 7, 11, 17, 25, and 59 DAE under high weed density, respectively. The predicted CHU from planting at herbicide application time that led to a 1%, 2.5%, 5%, 10%, 25%, and 50% yield loss in corn was 468, 636, 821, 1,271, N est.*, and N est.* CHU from planting under low weed density and 207, 283, 385, 551, 972, and 1,748 CHU from planting under high weed density, respectively. The predicted crop stage at herbicide application that led to a 1%, 2.5%, 5%, 10%, 25%, and 50% yield loss in corn was V5, V6, V7, V11, N est.*, and N est.* under low weed density and V1, V2, V3, V4, V8, and V14 under high weed density, respectively. Results indicate that weeds must be controlled before they reach 7 cm in height, prior to 11 d after crop emergence, prior to 385 accumulated CHU from emergence, or prior to the V3 stage under high weed density to avoid greater than 5% yield loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call