Abstract

The multidisciplinary research of tissue engineering utilizes biodegradable or decellularized scaffolds with autologous cell seeding. Objective of this study was to investigate the impact of different decellularization protocols on extracellular matrix integrity of xenogeneic tissue by means of multiphoton femtosecond laser scanning microscopy, biochemical and histological analysis. Pulmonary valves were dissected from porcine hearts and placed in a solution of trypsin–EDTA and incubated at 37 °C for either 5, 8, or 24 h, followed by a 24 h PBS washing. Native and decellularized valves were processed for histology, DNA, cell proliferation, matrix proteins and biomechanical testing. Multiphoton NIR laser microscopy has been applied for high-resolution 3D imaging of collagen and elastin. Distinct differences in several ECM components following decellularization time were observed. Total GAG contents decreased in a time-dependent manner, with o-sulfated GAGs being more susceptible to degradation than n-sulfated GAGs. Efficiency of insoluble collagen extraction increased proportionally with decellularization time, suggesting ECM-integrity may be compromised with prolonged incubation. Biomechanical testing revealed a gradual weakening of mechanical strength with increased decellularization time. The enzymatic decellularization process of heart valves revealed a time-dependent loss of cells, ECM components and biomechanical strength. In order to avoid any immune response a thorough decellularization of 24 h remains mandatory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.