Abstract
AbstractThree Archimedean copulas were employed to model annual maximum flood peak data of different lengths. Estimation methods based on ranks were employed for parameter estimation. Marginals were modeled with the generalized extreme value (GEV) distribution. Then, uncertainty in modeling results was investigated with the change in data length. The joint and conditional return periods were also analyzed with the selected copula model to see how it varied with data length. Results showed that the accuracy of modeling deteriorated with the decrease in data length and that the best-fitting copula model depended on the data length. The uncertainty of modeling results may be due to the uncertainty of the flow itself when the data length is shortened. The data length has a negative effect not only on copula modeling but may also have an adverse effect on the marginal, which is an important factor when using a copula model to do bivariate analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.