Abstract

Tamoxifen is a mainstay in the treatment of hormone-receptor sensitive breast cancer. To be effective, it needs conversion into 4-hydroxy-tamoxifen and endoxifen. The key enzyme involved is encoded by the gene CYP2D6 of which several, sometimes population-specific alleles are known. Corresponding enzyme variants may result in poor, intermediate, and extensive metabolization and therefore different steady-state plasma levels of active metabolites. Those are hypothesized to be linked to clinical outcomes of tamoxifen therapy. However, a wealth of mostly retrospective cohort studies came up with conflicting results. Appraisal of these studies is difficult and a metaanalysis impossible due to heterogeneity of patient populations, disease factors, treatment modalities, and measured outcomes. As standardization would not overcome intrinsic limitations of retrospective analyses, prospective trials comparing genotype-guided versus unsighted tamoxifen treatment are required to prove whether routine CYP2D6 genotyping is clinically effective and cost-effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.