Abstract

In vitro tissue engineering of vascular conduits requires a synergy between several external factors, including biochemical supplementation and mechanotranductive stimulation. The goal of this study was to improve adult human vascular smooth muscle cell orientation and elastic matrix synthesis within 3D tubular collagen gel constructs. We used a combination of elastogenic factors (EFs) previously tested in our lab, along with cyclic circumferential strains at low amplitude (2.5%) delivered at a range of frequencies (0.5, 1.5, and 3 Hz). After 21 days of culture, the constructs were analyzed for elastic matrix outcomes, activity of matrix metalloproteinases (MMPs)-2 and -9, cell densities and phenotype, and mechanical properties of constructs. While cell densities remained unaffected by the addition of stretch, contractile phenotypic markers were elevated in all stretched constructs relative to control. Constructs cultured with EFs stretched at 1.5 Hz exhibited the maximum elastin mRNA expression and total matrix elastin (over sixfold vs. the static EFs control). MMP-2 content was comparable in all treatment conditions, but MMP-9 levels were elevated at the higher frequencies (1.5 and 3 Hz). Minimal circumferential orientation was achieved and the mechanical properties remained comparable among the treatment conditions. Overall, constructs treated with EFs and stretched at 1.5 Hz exhibited the most elastogenic outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.