Abstract

Covid-19 lockdowns have improved the ambient air quality across the world via reduced air pollutant levels. This article aims to investigate the effect of the partial lockdown on the main ambient air pollutants and their elemental concentrations bound to PM2.5 in Hanoi. In addition to the PM2.5 samples collected at three urban sites in Hanoi, the daily PM2.5, NO2, O3, and SO2 levels were collected from the automatic ambient air quality monitoring station at Nguyen Van Cu street to analyze the pollution level before (March 10th–March 31st) and during the partial lockdown (April 1st–April 22nd) with “current” data obtained in 2020 and “historical” data obtained in 2014, 2016, and 2017. The results showed that NO2, PM2.5, O3, and SO2 concentrations obtained from the automatic ambient air quality monitoring station were reduced by 75.8, 55.9, 21.4, and 60.7%, respectively, compared with historical data. Besides, the concentration of PM2.5 at sampling sites declined by 41.8% during the partial lockdown. Furthermore, there was a drastic negative relationship between the boundary layer height (BLH) and the daily mean PM2.5 in Hanoi. The concentrations of Cd, Se, As, Sr, Ba, Cu, Mn, Pb, K, Zn, Ca, Al, and Mg during the partial lockdown were lower than those before the partial lockdown. The results of enrichment factor (EF) values and principal component analysis (PCA) concluded that trace elements in PM2.5 before the partial lockdown were more affected by industrial activities than those during the partial lockdown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.