Abstract
The COVID-19 pandemic altered the human mobility and economic activities immensely, as authorities enforced unprecedented lock down regulations. In order to reduce the spread of COVID-19, a complete lockdown was observed between 24 March – 31 May 2020 in Pakistan. This paper aims at investigating the PM2.5, AOD and column amounts of six trace gases (NO2, SO2, CH4, HCHO, C2H2O2, and O3) by comparing periods of reduced emissions during lockdown periods with reference periods without emission reductions over Lahore, Pakistan. HYSPLIT cluster trajectory analyses were performed, which confirmed similar meteorological flow conditions during lockdown and reference periods. This provides confidence that any change in air quality conditions would be due to changes in human activities and associated emissions. The results show about 38% reduction in ambient surface PM2.5 levels during the lockdown period. This change also positively correlated with MODISDB and AERONETAOD data with a decrease of AOD by 42% and 35%, respectively. Reductions for tropospheric columns of NO2 and SO2 were about 20% and 50%, respectively during a semi lockdown period, while no reduction in the CH4, C2H2O2, HCHO and O3 levels occurred. During the lockdown period NO2, O3 and CH4 were about 50%, 45% and 25% lower, respectively, but no reduction in SO2, C2H2O2 and HCHO levels were noticed compared to the reference lockdown period for Lahore. HYSPLIT cluster trajectory analysis revealed the greatest impact on Lahore air quality through local emissions and regional transport from the east (agricultural burning and industry).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.