Abstract
This research assesses the impact of the integration of Continuous Climb operations (CCOs) on Air Traffic Control (ATC) workload. The methodology encompasses different modules: CCO, standard departing and arriving trajectories extracted from an external database, an ad-hoc algorithm for detecting and solving conflicts, and an ATC-workload model with the inclusion of CCO-task modifications. Monte Carlo simulations evaluates different combinations of these modules. Then, a sensitivity analysis is performed to evaluate two parameters: the impact of the calibration of the maximum ATC workload and the percentage increase of the CCO tasks on the ATC workload. The methodology is applied to a case study at Palma airport in Spain. Extensive numerical simulations are executed based on the integration of CCOs into the system from 0% to 100%. The integration of CCOs implies the increase of the ATC workload in the Control Tower (TWR) and the reduction in the Approach Control Centre (APP). The sensitivity analysis shows that the decrease in the increase of CCO-task workload barely affects the number of CCOs that can be operated without exceeding the workload limits. Conversely, the reduction of the ATC workload calibration allows the integration of CCOs around 50% in the case of 90% TWR calibration and up to 100% in the case of 80%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.